Do branch lengths help to locate a tree in a phylogenetic network?
نویسندگان
چکیده
Phylogenetic networks are increasingly used in evolutionary biology to represent the history of species that have undergone reticulate events such as horizontal gene transfer, hybrid speciation and recombination. One of the most fundamental questions that arise in this context is whether the evolution of a gene with one copy in all species can be explained by a given network. In mathematical terms, this is often translated in the following way: is a given phylogenetic tree contained in a given phylogenetic network? Recently this tree containment problem has been widely investigated from a computational perspective, but most studies have only focused on the topology of the phylogenies, ignoring a piece of information that, in the case of phylogenetic trees, is routinely inferred by evolutionary analyses: branch lengths. These measure the amount of change (e.g., nucleotide substitutions) that has occurred along each branch of the phylogeny. Here, we study a number of versions of the tree containment problem that explicitly account for branch lengths. We show that, although length information has the potential to locate more precisely a tree within a network, the problem is computationally hard in its most general form. On a positive note, for a number of special cases of biological relevance, we provide algorithms that solve this problem efficiently. This includes the case of networks of limited complexity, for which it is possible to recover, among the trees contained by the network with the same topology as the input tree, the closest one in terms of branch lengths.
منابع مشابه
The K tree score: quantification of differences in the relative branch length and topology of phylogenetic trees
SUMMARY We introduce a new phylogenetic comparison method that measures overall differences in the relative branch length and topology of two phylogenetic trees. To do this, the algorithm first scales one of the trees to have a global divergence as similar as possible to the other tree. Then, the branch length distance, which takes differences in topology and branch lengths into account, is app...
متن کاملDo tree split probabilities determine the branch lengths?
The evolution of aligned DNA sequence sites is generally modeled by a Markov process operating along the edges of a phylogenetic tree. It is well known that the probability distribution on the site patterns at the tips of the tree determines the tree topology, and its branch lengths. However, the number of patterns is typically much larger than the number of edges, suggesting considerable redun...
متن کامل1 Combining Multiple Datasets in a Likelihood Analysis : Which Models are Best ?
Until recently, phylogenetic analyses have been routinely based on homologous sequences of a single gene. Given the vast number of gene sequences now available, phylogenetic studies are now based on the analysis of multiple genes. Thus, it has become necessary to devise statistical methods to combine multiple molecular datasets. Here, we compare several models for combining different genes for ...
متن کاملTree split probabilities determine the branch lengths
The evolution of aligned DNA sequence sites is generally modeled by a Markov process operating along the edges of a phylogenetic tree. It is well known that the probability distribution on the site patterns at the tips of the tree determines the tree and its branch lengths. However, the number of patterns is typically much larger than the number of edges, suggesting considerable redundancy in t...
متن کاملRobustness of compound Dirichlet priors for Bayesian inference of branch lengths.
We modified the phylogenetic program MrBayes 3.1.2 to incorporate the compound Dirichlet priors for branch lengths proposed recently by Rannala, Zhu, and Yang (2012. Tail paradox, partial identifiability and influential priors in Bayesian branch length inference. Mol. Biol. Evol. 29:325-335.) as a solution to the problem of branch-length overestimation in Bayesian phylogenetic inference. The co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bulletin of mathematical biology
دوره 78 9 شماره
صفحات -
تاریخ انتشار 2016